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A B S T R A C T

Four species of porcine circoviruses (PCV1–4) have been reported to circulate in Chinese domestic pigs, while the
epizootiology of these viruses in free-ranging wild boars in China remains unknown. In this study, tissue and
serum samples collected from diseased or apparently healthy wild boars between 2018 and 2020 in 19 regions of
China were tested for the prevalence of PCV1–4 infections. Positive rates of PCV1, PCV2, and PCV3 DNA in the
tissue samples of Chinese wild boars were 1.6% (4/247), 58.3% (144/247), and 10.9% (27/247) respectively,
with none positive for PCV4. Sequence analysis of viral genome showed that the four PCV1 strains distributed in
Hunan and Inner Mongolia shared 97.5%–99.6% sequence identity with global distributed reference strains.
Comparison of the ORF2 gene sequences showed that 80 PCV2 strains widely distributed in 18 regions shared
79.5%–100% sequence identity with reference strains from domestic pigs and wild boars, and were grouped into
PCV2a (7), PCV2b (31) and PCV2d (42). For PCV3, 17 sequenced strains shared 97.2%–100% nucleotide identity
at the genomic level and could be divided into PCV3a (3), PCV3b (2) and PCV3c (12) based on the phylogeny of
ORF2 gene sequences. Serological data revealed antibody positive rates against PCV1 and PCV2 of 11.4% (19/
167) and 53.9% (90/167) respectively. The data obtained in this study improved our understanding about the
epidemiological situations of PCVs infection in free-ranging wild boars in China and will be valuable for the
prevention and control of diseases caused by PCVs infection.
1. Introduction

Porcine circoviruses (PCVs) are the smallest known non-
enveloped animal viruses. They contain circular single-stranded
DNA genomes and belong to the genus Circovirus within the family
Circoviridae (Ellis, 2014; Prinz et al., 2019). Numerous circoviruses
have been found in mammals, fish, birds and insects (Opriessnig
et al., 2020). In pigs, four circovirus species within the genus Cir-
covirus have been identified, including the non-pathogenic porcine
circovirus 1 (PCV1) (Tischer et al., 1974), the pathogenic porcine
circovirus 2 (PCV2) (Allan et al., 1998), porcine circovirus 3 (PCV3)
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(Palinski et al., 2017) and the recently identified porcine circovirus 4
(PCV4) (Zhang et al., 2020). The viral genome sizes are similar for
PCV1 (1758–1760 nt), PCV2 (1766–1769 nt), and PCV4 (1770 nt),
and with a longer genome found in PCV3 (1999–2000 nt). All four
PCVs show similar genomic structure with two main open reading
frames (ORF1 and ORF2) oriented in opposite directions in the cir-
cular genome. ORF1, or Rep gene, encodes Rep protein which is
involved in replication, and ORF2, or Cap gene, encodes the Cap
protein, which is the only structural component of the virion and the
dominant immunogenic antigen (Cao et al., 2018).
(Z. Tu).
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PCV1 was first identified in a porcine kidney cell culture (PK-15) in
1974. It has not been associated with disease, and is genetically stable
(Cao et al., 2018). PCV2 is the etiological agent of porcine
circovirus-associated disease (PCVAD) and causes substantial economic
losses for the pig industry worldwide (Gillespie et al., 2009; Ellis,
2014). Genotyping of the global PCV2 strains based on the full-length
ORF2 gene sequences have grouped PCV2 strains into 8 genotypes
(PCV2a–h) with PCV2a, 2b and 2d as the dominant groups during
different time periods (Turlewicz-Podbielska et al., 2022). PCV3 was
originally identified in 2015 in the USA by metagenomic sequencing,
and is associated with different porcine diseases, including cardiac and
multi-systemic inflammation, porcine dermatitis and nephropathy
syndrome (PDNS), reproductive failure, and the porcine respiratory
disease complex and diarrhea (Phan et al., 2016; Palinski et al., 2017).
PCV3 infection has been reported in many countries, including USA,
China, Thailand, India, Brazil, Poland, Italy and Germany, indicating
its worldwide spread (Chen et al., 2021). PCV4 was first reported in
2019 in Hunan Province, China, and has been associated with respi-
ratory and enteric symptoms, and PDNS. It has subsequently been
reported in other regions in China, including Henan, Shanxi, Inner
Mongolia and Guangxi (Tian et al., 2020; Sun et al., 2021; Zhuo et al.,
2021), and also in Korea (Dyk et al., 2021).

In addition to domestic pigs, PCVs have also been found to be preva-
lent in free-ranging wild boars in many foreign countries, including Italy
(Amoroso et al., 2021; Dei Giudici et al., 2020), Korea (Song et al., 2020),
Brazil (Souza et al., 2021), Austria (Auer et al., 2022), Ukraine (Rudova
et al., 2022), Hungary (Cs�agola et al., 2006), Portugal (de Sousa Moreira
et al., 2022) and Germany (Prinz et al., 2019), while the epizootiology of
PCVs in Chinese free-ranging wild boars remains little research because of
the difficulty of sample collection, although PCV2 infection was observed
in hybrid wild boars from north-east China and PCVs in wild boar from
Jiangxi Province of China (Guo et al., 2019; Wu et al., 2022). Since wild
boars are considered an important reservoir of animal and zoonotic
pathogens, it is important to identify the epizootiology trends of important
and emerging infectious diseases in wild boars for both livestock
Fig. 1. Detection of PCVs infection in the tissue samples of Chinese wild boars collec
in this study and the positive numbers of PCVs DNA in each region. Green, blue
accompanied with the positive numbers. The number of isolates of PCVs is shown wit
Chinese wild boars in different years.
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production and public health issues (Meng et al., 2009; Li et al., 2019;
Gong et al., 2022). In this study, the genetic characteristics and serological
prevalence of PCVs in Chinese free-ranging wild boars were investigated.

2. Materials and methods

2.1. Sample information

Since the first outbreaks of African swine fever (ASF) in 2018 in the
domestic pigs andwild boars of China (Li et al., 2019; Zheng et al., 2022),
the National Forestry and Grassland Administration of China enhanced
the surveillance of ASF and other important and emerging infectious
diseases in wild boars, and sample collections from sick and apparently
healthy wild boars in different regions were approved. Between August
2018 and November 2020, tissue samples (tonsil, spleen, liver, kidney,
lung and lymph node) and 167 serum samples from 247 wild boars were
collected over 19 regions in China and transported under refrigerated
conditions to the laboratory and stored at �80 �C until use (Fig. 1A).

2.2. Virus detection

Tissue samples from each boar were combined and processed as 10%
homogenates in minimal essential medium (MEM; Corning, USA). Clar-
ified supernatants were then subjected to viral genomic DNA extraction
using the TIANamp Genomic DNA Kit (TIANGEN, Beijing, China) ac-
cording to the manufacturer's instructions. The obtained DNA served as
the template for PCR detection of PCV1 (Mankertz et al., 2000), PCV2
(Kim et al., 2001), PCV3 (Ku et al., 2017) and PCV4 (Tian et al., 2020) as
previously described, and the PCR amplicons were analyzed by 1%
agarose gel electrophoresis.

2.3. Virus DNA sequencing

To analyze the genomic sequence of PCV1, PCV2 and PCV3, the full-
length ORF genes and genomes of PCVs isolates were amplified using Taq
ted between 2018 and 2020. A Geographical distribution of wild boars collected
and red circles represent PCV1, PCV2, and PCV3-positive regions respectively
h the corresponding-colored dot. B The positive numbers of PCVs detected in the



Fig. 2. Phylogenetic trees based on the nucleotide sequences of full-length
ORF2 genes of PCV1. Phylogenetic analysis was performed using MEGA v7.0
with the maximum likelihood method and 1000 bootstraps replicates, and the
best fitting substitution model was Hasegawa-Kishino-Yano. PCV1 strains
identified in this study are marked with black triangles (▴).
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DNA polymerase (TaKaRa, Dalian, China) as described previously (Cao
et al., 2018; Hu et al., 2022; Xia et al., 2019; Wen et al., 2018), the PCR
amplicons were separated by electrophoresis on a 1% agarose. The bands
were extracted and purified using the AxyPrep DNA Gel Extraction Kit
(AxyGene, USA). Then, the PCR products were ligated into the pMD-18T
Vector System (TaKaRa Co. Dalian, China), and the recombinant plas-
mids were directly sent to Comate Bioscience (Jilin, China) for
sequencing with ABI 3700. Moreover, the full-length ORF2 gene of PCV2
isolates and the complete genomic sequences of the PCV1, PCV2 and
PCV3 isolates obtained in this study have been submitted to the GenBank
database (https://www.ncbi.nlm.nih.gov/genbank/) using the
Sequin DNA sequence submission tool (https://www.ncbi.nlm.nih.gov/
Sequin/).

2.4. Alignment and phylogenetic analysis

Phylogenetic analyses were performed with Clustal W and Molecular
Evolutionary Genetics Analysis software MEGA 7.0 (Center for Evolu-
tionary Functional Genomics, Tempe, AZ). For evolutionary analysis,
phylogenetic trees based on the nucleotide sequences of ORF2 gene was
constructed using the maximum likelihood methods, with 1000 boot-
strap replications and the best-fitting substitution models.

2.5. Seroprevalence of wild boars PCV1 and PCV2 infection in China

A serological survey of antibodies against PCV1 or PCV2 in wild boars
was performed using the Porcine circovirus type 1 ELISA Kit (Jianglaibio,
Shanghai, China) and Porcine circovirus type 2 ELISA Kit (Combetter,
Hunan, China) according to the manufacturers’ instructions.

3. Results

3.1. Detection of PCVs in Chinese wild boars

To simplify the procedure for PCVs detection, the tissue samples
including tonsil, spleen, liver, kidney, lung and lymph node from each
wild boar were mixed and homogenized, then subjected to DNA extrac-
tion and PCR detection. As showed in Fig. 1A, 4 of 247 wild boars (1.6%)
from Hunan (1) and Inner Mongolia (3) were positive for PCV1, while
more than half of the wild boars (58.3%, 144/247) over 17 regions were
PCV2 positive, indicating the wide distribution of PCV2 in Chinese wild
boars. For PCV3, 10.9% (27/247) of wild boars from 11 regions were
positive, but none tested positive for PCV4. Co-infection with different
PCVs was also observed, with rates of 1.6% (4/247) and 9.7% (24/247)
for PCV1/PCV2 and PCV2/PCV3 respectively, but co-infection of PCV1/
PCV3 was not observed. In addition, PCVs DNA in the serum samples
were also detected and the positive rates were 0.6% (1/167) for PCV1,
14.4% (24/167) for PCV2, 6.6% (11/167) for PCV3, but none is positive
for PCV4. Notably, all PCVs-positive serum samples were derived from
wild boars carrying PCVs nucleic acids in the tissue samples. Further-
more, the prevalence of the PCVs by year is different. PCV1 was only
detected in 2019, PCV3 was detected in 2018 (2.4%, 9/38) and 2019
(9.1%, 18/197), while PCV2 was detected in 2018 (89.5%, 34/38), 2019
(51.3%, 101/197), and 2020 (75.0%, 9/12) (Fig. 1B).

3.2. Phylogenetic analysis of the PCV1 isolates

The complete genome sequences of all four PCV1 strains were ob-
tained and have been deposited in GenBank under accession numbers
MZ594653–MZ594656. The four PCV1 isolates, sharing 98.5%–99.7% nt
sequence identity with each other, were found to be closely related to the
reference sequences from domestic pigs and wild boars (97.5%–99.6%),
indicating the high genetic stability of PCV1 strains worldwide. As shown
in Fig. 2, PCV1 strain CN-HuN/63 from Hunan Province clustered with
the CN-HuN/2013 strain from a Chinese domestic pig and with Hun/
2006 from a Hungarian wild boar, all sharing 97.6%–99.0% nt identity.
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The remaining three PCV1 strains, CN-NMG/96–98, from InnerMongolia
formed a clade neighboring the single branches with strains from French
(Aus/2014) and China (CN-TJ/2014) domestic pigs.
3.3. Phylogenetic analysis of the PCV2 isolates

Full-length ORF2 gene sequences of 80 wild boar PCV2 strains were
obtained and deposited in GenBank under accession numbers
MZ606284–MZ606363. Sequence analysis of full-length ORF2 genes
showed that the 80 PCV2 strains shared 85.5%–100% nt and 87.6%–

100% amino acid identities with each other, and 79.5%–100% nt identity
with reference strains from wild boars and domestic pigs (Fig. 3A), and
were grouped into PCV2a (8.8%, 7/80), PCV2b (38.8%, 31/80) and
PCV2d (52.5%, 42/80), indicating that PCV2d is the dominant genotype
in Chinese wild boars, similar to that circulating in Chinese domestic pigs
(Zhai et al., 2014; Xia et al., 2019; Xu et al., 2021). And the prevalence of
the different PCV2 genotypes by year is shown in Fig. 3B. In addition,
analysis of the complete genomic sequences of 15 PCV2 strains showed
genomic lengths of 1767–1768 nt (deposited in GenBank under accession
numbers MZ615666–MZ615680), with the extra nucleotide in the 1768
nt genomes (CN-JN/25, CN-JN/26, CN-HLJ/53, CN-HLJ/54 and
CN-Shanxi/70) being due to an insertion of T at site 1035 of viral ge-
nomes. Moreover, we identified several amino acid substitutions in the
Cap proteins of PCV2a, PCV2b and PCV2d by multiple sequence align-
ment of deduced amino acids (Table 1). In particular, it was reported that
T60 is highly conserved in previously identified PCV2a reference strains,
but T60S mutation is found in the wild boar PCV2a strains CN-JL/25,
CN-JL/26, CN-JL/33 and CN-HLJ/46. Similar cases also occurred in
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Fig. 3. Phylogenetic analysis and temporal dynamics of wild boar PCV2 strains. A Phylogenetic tree based on the nucleotide sequences of full-length ORF2 genes of
PCV2. Phylogenetic analysis was performed using MEGA v7.0 with the maximum likelihood method and 1000 bootstraps replicates, and the best fitting substitution
model was Tamura-Nei model. PCV2 strains identified in this study are marked with black triangles (▴). B Temporal dynamics of different PCV2 genotype strains
identified in Chinese wild boars.
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wild boars PCV2b strains CN-JL/6, CN-JL/34, CN-JL/35, CN-JL/38, and
CN-JL/83 (T131P), and in PCV2d strain CN-HLJ/40 (K59A and T151P)
(Xia et al., 2019; Xu et al., 2021).

3.4. Phylogenetic analysis of the PCV3 isolates

Of the 27 PCV3 positive samples, the complete genome sequences of
17 were determined and have been deposited in GenBank
(MZ615681–MZ615697). These sequenced strains contained two
different genome sizes: 1999 nt (3) and 2000 nt (14), the shorter with a G
deletion at 1149 nt. The sequenced 17 PCV3 strains shared 96.3%–99.4%
nt identity with the wild boar and domestic pig reference strains. As
shown in Fig. 4, PCV3 strains circulating in the Chinese free-ranging wild
boars were grouped within PCV3a (3), PCV3b (2), and PCV3c (12), with
each containing different amino acid residues at Cap sites 24, 27, 77, and
150 (A/V24, R/K27, S/T77 and I/L150), which are the molecular
markers of the three PCV3 genotypes (Fu et al., 2018; Fux et al., 2018;
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Geng et al., 2019). Moreover, 12 PCV3 isolates strains of wild boars in
China carry an N56D substitution at position 56 of the Cap protein
(Fig. 5).

3.5. Serological survey of PCV1 and PCV2 infection

The overall seroprevalence of PCV1 and PCV2 in the examined wild
boars was 11.4% (19/167) and 53.9% (90/167), respectively. PCV1
seropositive wild boars were from 10 regions: Inner Mongolia (4/23),
Heilongjiang (1/9), Jilin (3/19), Hunan (1/6), Yunnan (2/10), Guang-
dong (2/13), Anhui (2/10), Guizhou (1/11), Zhejiang (1/11) and Henan
(2/18). PCV2 seropositive samples were from 16 regions: Inner Mongolia
(12/23), Liaoning (5/9), Heilongjiang (4/9), Jilin (18/19), Hunan (1/6),
Shanxi (5/5), Yunnan (8/10), Xinjiang (3/6), Chongqing (2/4), Guang-
dong (7/13), Hebei (3/8), Shaanxi (1/1), Anhui (4/10), Guizhou (4/11),
Zhejiang (3/11) and Henan (10/18) (Table 2), indicating the wide dis-
tribution of PCV2 infection in wild boars across China.



Table 1
Information about amino acid mutations in PCV2 Cap protein.

Amino acid mutation site Genotype

PCV2a PCV2b PCV2d

8 Y/F Y Y/F
21 Q/S Q Q
47 S/A T T
53 F F I/F
57 V I V/I
59 A K/R K/A
60 T/S T T
63 T/S/R R/K R
68 A/S A N/A
72 L/M M M
76 L/I I I
77 D N N
80 V/L L L
86 T S S
88 K P P
89 I R L
90 S S T
91 I V V
121 S S T
123 I/V V V/I
130 V/F V V
131 M/P T/P T/P
133 V/S A A
134 P/T T N/T
136 Q/L L L
151 P T T/P
169 S S R/G/S
185 M L L
187 L/I L L
190 S T/A T
191 R/K G G
206 K I I
210 D E D/E
215 V V I/V
232 K K/N -/K/N
234 * * */K
235 - - -/*/V

*Amino acid position encoded by the stop codon.
- No amino acid at this position.

Fig. 4. Phylogenetic analysis of wild boar PCV3 strains with the reference
strains based on the nucleotide sequences of full-length ORF2 genes of PCV3.
Phylogenetic analysis was performed using MEGA v7.0 with the maximum
likelihood method and 1000 bootstraps replicates, and the best fitting substi-
tution model was Hasegawa-Kishino-Yano. The genotype-specific amino acid
residues in Cap proteins of PCV3 strains were attached with the phylogenetic
tree. PCV3 strains identified in this study are marked with black triangles (▴).
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4. Discussion

PCVs have been identified and there are currently four recognized
types PCV1–4. Here, the prevalence of PCVs in Chinese wild boars is
given except for Jiangxi Province (Hu et al., 2022; Wu et al., 2022). The
present study shows that the wild boar populations have been infected
with PCV1, PCV2 and PCV3, but not infected with PCV4. Overall, the
positive rate of PCV1 DNA was 1.62% (4/247) in this study, which is
lower than clinical samples of Guangxi (12.95%, 32/247) and wild boar
samples of Jiangxi Province (21.7%, 30/138) (Cao et al., 2018; Hu et al.,
2022), while the prevalence of PCV2 infection was found to be similar to
that in the clinical samples of domestic pigs in central China (57.1%,
113/198) (Xu et al., 2021), but higher than that reported in wild boars in
other parts of the world, including Italy (26.8%, 22/82) (Fanelli et al.,
2022), Spain (46.8%, 89/202) (Risco et al., 2013), Hungary (20.5%,
63/307) (Cs�agola et al., 2006), Germany (10.7%, 6/56) (Prinz et al.,
2019) and Korea (6.8%, 91/1340) (Song et al., 2020). For PCV3, 10.9%
(27/247) of samples from 11 regions were positive, which is lower than
that found in domestic pigs in central China (36.4%, 72/198) (Xu et al.,
2021) and southern China (26.7%, 76/285) (Fu et al., 2018), and in wild
boars in Germany (29.2%, 26/89) (Prinz et al., 2019), Italy (33%,
62/187) (Franzo et al., 2018) and Spain (42.7%, 221/518) (Klaumann
et al., 2019). The above difference of the prevalence rates of PCVs
infection between Chinese wild boars and domestic pigs or foreign wild
boars may be associated with the sampling numbers and seasons, the
individual health status, the etiological situations and the geographical
area. Since the PCVs-positive wild boars were apparent healthy upon
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sample collection, it remains unknown if the positivity of PCVs infection
is associated with the onset of disease in wild boars.

In this study, based on phylogenetic analysis of PCV2 ORF2 genes,
PCV2a, PCV2b and PCV2d represented 8.75% (7/80), 38.75% (31/80)
and 52.5% (42/80) of the total, respectively. Samples from north-east
China showed that the epizootiology of PCV2 in free-ranging wild
boars was similar to that of local hybrid wild boars, in which PCV2a,
PCV2b and PCV2d are prevalent (Guo et al., 2019). However, only
PCV2b and PCV2d were detected in Jiangxi Province (Hu et al., 2022). In
addition, only PCV2b was detected in Fujian, Hebei and Chongqing wild
boars, where PCV2d and PCV2a strains were also prevalent in the local
domestic pigs (Han et al., 2021; Xu et al., 2022). Recently, PCV2e, a
newly identified genotype, has been reported to be prevalent in domestic
pigs in southern China, including Fujian and Guangdong, while PCV2e
was not detected in wild boars from these regions in this study (Xu et al.,
2022). Moreover, comparison of the amino acid sequences of PCV2 Cap
proteins identified amino acid mutations among different genotypes
(Table 1). Some of them may be associated with the alteration of Cap
protein antigenicity, for example, K59A was found to be crucial for the
differential reactivity (Mah�e et al., 2000; Saha et al., 2012; Xia et al.,
2019b). In addition, Mah�e et al. (2000) reported that 6 linear epitopes



Fig. 5. Alignment of deduced amino acid sequences of PCV3 Cap proteins. Sequence comparison was performed using CLC Sequence Viewer 8 software. The major amino acid mutations are displayed in a red vertical box.
Red horizontal boxes indicate the strains identified in this study.
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Table 2
Prevalence of antibodies against PCV1 and PCV2 Cap protein in free-ranging wild
boars from different regions of China by ELISA.

Province No.
tested

PCV1 seroprevalence PCV2 seroprevalence

No.
positive

Prevalence
(%) (95% CI)

No.
positive

Prevalence
(%) (95% CI)

Jilin 19 3 15.8 18 94.7
Liaoning 9 0 0 5 55.5
Heilongjiang 9 1 11.1 4 44.4
aInner
Mongolia

23 4 17.4 12 52.2

Hebei 8 0 0 3 37.5
Shanxi 5 0 0 5 100
Shaanxi 1 0 0 1 100
Hunan 6 1 16.7 1 16.7
bChongqing 4 0 0 2 50.0
Guangdong 13 2 15.4 7 53.8
Yunnan 10 2 20.0 8 80.0
Anhui 10 2 20.0 4 40.0
Guizhou 11 1 9.1 4 36.4
Zhejiang 11 1 9.1 3 27.3
Henan 18 2 11.1 10 55.5
aXinjiang 6 0 0 3 50.0
Gansu 3 0 0 0 0
aNingxia 1 0 0 0 0
Total 167 19 11.4

(6.6–16.2)
90 53.9

(46.3–61.5)

CI, confidence interval.
a Autonomous region.
b Municipality.
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within the residues 25–43, 69–83, 113–127, 117–131, 169–183 and
193–207 aa of the PCV2 capsid protein were targeted by the immune
system. Some of the amino acid mutations maintained among different
PCV2 genotypes are located within the above epitopes, thus may alter the
host immune response upon PCV2 infection. Further studies are needed
to explore the function of these amino acid mutations existed between
different PCV2 genotypes.

Our results confirm that PCV3 is not only present in domestic pigs, but
also in apparently healthy wild boars. These sequenced strains of PCV3
contained two different genome sizes: 1999 nt (3) and 2000 nt (14), in
which the shorter one possessed a G deletion at 1149 nt, in neither the
ORFs nor the replication initiation sites, and was identical to a recently
described strain in Guangxi (Wen et al., 2018). Moreover, more detailed
investigations allowed the classification of subclades PCV3a, PCV3b and
PCV3c on the basis of the molecular characteristics at sites 24, 27, 77 and
150 (Fu et al., 2018; Fux et al., 2018; Geng et al., 2019). PCV3a strains
carrying A24, R/K27, S77 and I150 were dominant in the free-ranging
wild boars across Jilin, Heilongjiang, Henan, Shaanxi, Anhui and Inner
Mongolia. PCV3b strains carrying A24, R/K27, T77 and I/L150 were
prevalent in Jilin and Guangxi. PCV3c strains carrying V24, K27, S/T77
and I/L150 were exclusively found in Jilin Province.

Additionally, the seroprevalence of PCV1 and PCV2 in wild boars
sampled from different regions varied from 9.1%–20% for PCV1 and
16.7%–100% for PCV2 (Table 2). The various positive rates may be
associated with the limited numbers of wild boar samples. Further study
with larger sample size is needed. Moreover, 38 of 90 wild boars were
positive for both PCV2 nucleic acid and antibody, and one PCV1 DNA-
positive wild boar from Inner Mongolia was also positive for antibody
against PCV1 Cap protein. These results indicate that persistent in-
fections of PCV2 and PCV1 occurred among free-ranging wild boars in
China. In addition, the seroprevalence of PCV2 infection in Chinese free-
ranging wild boars is slightly higher than that in domestic pigs in
southern China (46.0%, 819/1779) (Shuai et al., 2007) and lower than
that in hybrid wild boars in northeast China (96.4%, 163/169) (Guo
et al., 2019), which was also differed from that reported in the
free-ranging wild boars in other countries, including Brazil (86.5%,
669
1129/1305) (Barbosa et al., 2016), Greece (19.1%, 18/94) (Touloudi
et al., 2015) and Spain (47.9%, 314/656) (Vicente et al., 2004).

5. Conclusions

In summary, the present study firstly demonstrates the epidemio-
logical situations of PCV1, PCV2 and PCV3 infection in free-ranging wild
boars in China, and shows that PCVs circulating in Chinese wild boars are
closely related to those in domestic pigs, thus emphasizing the need for
constant surveillance of these PCVs, particularly PCV2, in order to avoid
their transmission from wild boars to domestic pigs.
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